Query & search registries

This guide walks through all the ways of finding metadata records in LaminDB registries.

# !pip install lamindb
!lamin init --storage ./test-registries
Hide code cell output
→ connected lamindb: testuser1/test-registries

We’ll need some toy data.

import lamindb as ln

# create toy data
ln.Artifact(ln.core.datasets.file_jpg_paradisi05(), description="My image").save()
ln.Artifact.from_df(ln.core.datasets.df_iris(), description="The iris collection").save()
ln.Artifact(ln.core.datasets.file_fastq(), description="My fastq").save()

# see the content of the artifact registry
ln.Artifact.df()
Hide code cell output
→ connected lamindb: testuser1/test-registries
! no run & transform got linked, call `ln.track()` & re-run
! no run & transform got linked, call `ln.track()` & re-run
! no run & transform got linked, call `ln.track()` & re-run
uid version is_latest description key suffix type size hash n_objects n_observations _hash_type _accessor visibility _key_is_virtual storage_id transform_id run_id created_at created_by_id
id
3 wpJpBoQpIuDXKpno0000 None True My fastq None .fastq.gz None 20 hi7ZmAzz8sfMd3vIQr-57Q None None md5 None 1 True 1 None None 2024-10-24 09:31:44.851402+00:00 1
2 b6iC4k9OVo99RdVS0000 None True The iris collection None .parquet dataset 5629 5axHfO_2Pmlun2sJZHVuNg None None md5 DataFrame 1 True 1 None None 2024-10-24 09:31:44.844793+00:00 1
1 Ea6LFuoAL55PLTXh0000 None True My image None .jpg None 29358 r4tnqmKI_SjrkdLzpuWp4g None None md5 None 1 True 1 None None 2024-10-24 09:31:44.752736+00:00 1

Look up metadata

For registries with less than 100k records, auto-completing a Lookup object is the most convenient way of finding a record.

For example, take the User registry:

# query the database for all users, optionally pass the field that creates the key
users = ln.User.lookup(field="handle")

# the lookup object is a NamedTuple
users
Hide code cell output
Lookup(testuser1=User(uid='DzTjkKse', handle='testuser1', name='Test User1', created_at=2024-10-24 09:31:43 UTC), dict=<bound method Lookup.dict of <lamin_utils._lookup.Lookup object at 0x7f08dc601810>>)

With auto-complete, we find a specific user record:

user = users.testuser1
user
Hide code cell output
User(uid='DzTjkKse', handle='testuser1', name='Test User1', created_at=2024-10-24 09:31:43 UTC)

You can also get a dictionary:

users_dict = ln.User.lookup().dict()
users_dict
Hide code cell output
{'testuser1': User(uid='DzTjkKse', handle='testuser1', name='Test User1', created_at=2024-10-24 09:31:43 UTC)}

Query exactly one record

get errors if more than one matching records are found.

# by the universal base62 uid
ln.User.get("DzTjkKse")

# by any expression involving fields
ln.User.get(handle="testuser1")
Hide code cell output
User(uid='DzTjkKse', handle='testuser1', name='Test User1', created_at=2024-10-24 09:31:43 UTC)

Query sets of records

Filter for all artifacts created by a user:

ln.Artifact.filter(created_by=user).df()
Hide code cell output
uid version is_latest description key suffix type size hash n_objects n_observations _hash_type _accessor visibility _key_is_virtual storage_id transform_id run_id created_at created_by_id
id
1 Ea6LFuoAL55PLTXh0000 None True My image None .jpg None 29358 r4tnqmKI_SjrkdLzpuWp4g None None md5 None 1 True 1 None None 2024-10-24 09:31:44.752736+00:00 1
2 b6iC4k9OVo99RdVS0000 None True The iris collection None .parquet dataset 5629 5axHfO_2Pmlun2sJZHVuNg None None md5 DataFrame 1 True 1 None None 2024-10-24 09:31:44.844793+00:00 1
3 wpJpBoQpIuDXKpno0000 None True My fastq None .fastq.gz None 20 hi7ZmAzz8sfMd3vIQr-57Q None None md5 None 1 True 1 None None 2024-10-24 09:31:44.851402+00:00 1

To access the results encoded in a filter statement, execute its return value with one of:

  • .df(): A pandas DataFrame with each record in a row.

  • .all(): A QuerySet.

  • .one(): Exactly one record. Will raise an error if there is none. Is equivalent to the .get() method shown above.

  • .one_or_none(): Either one record or None if there is no query result.

Note

filter() returns a QuerySet.

The ORMs in LaminDB are Django Models and any Django query works. LaminDB extends Django’s API for data scientists.

Under the hood, any .filter() call translates into a SQL select statement.

.one() and .one_or_none() are two parts of LaminDB’s API that are borrowed from SQLAlchemy.

Search for records

Search the toy data:

ln.Artifact.search("iris").df()
Hide code cell output
uid version is_latest description key suffix type size hash n_objects n_observations _hash_type _accessor visibility _key_is_virtual storage_id transform_id run_id created_at created_by_id
id
2 b6iC4k9OVo99RdVS0000 None True The iris collection None .parquet dataset 5629 5axHfO_2Pmlun2sJZHVuNg None None md5 DataFrame 1 True 1 None None 2024-10-24 09:31:44.844793+00:00 1

Let us create 500 notebook objects with fake titles, save, and search them:

transforms = [ln.Transform(name=title, type="notebook") for title in ln.core.datasets.fake_bio_notebook_titles(n=500)]
ln.save(transforms)

# search
ln.Transform.search("intestine").df().head(5)
Hide code cell output
uid version is_latest name key description type source_code hash reference reference_type _source_code_artifact_id created_at created_by_id
id
12 YtNoz5TG6fAv0000 None True Igg2 Beta cell research intestine result. None None notebook None None None None None 2024-10-24 09:31:46.491768+00:00 1
17 pNYid8JnBNYQ0000 None True Cluster intestine classify IgE Cranial nerves ... None None notebook None None None None None 2024-10-24 09:31:46.492078+00:00 1
20 1fIuIoUjFcbp0000 None True Adrenergic Neural Cells Centroacinar cell IgA ... None None notebook None None None None None 2024-10-24 09:31:46.492265+00:00 1
21 l9L75CiUVSzV0000 None True Intestinal intestine cluster Cementoblast. None None notebook None None None None None 2024-10-24 09:31:46.492327+00:00 1
23 qMp05AA0ZZUg0000 None True Investigate intestine intestine Bladder IgE. None None notebook None None None None None 2024-10-24 09:31:46.492450+00:00 1

Note

Currently, the LaminHub UI search is more powerful than the search of the lamindb open-source package.

Leverage relations

Django has a double-under-score syntax to filter based on related tables.

This syntax enables you to traverse several layers of relations and leverage different comparators.

ln.Artifact.filter(created_by__handle__startswith="testuse").df()  
Hide code cell output
uid version is_latest description key suffix type size hash n_objects n_observations _hash_type _accessor visibility _key_is_virtual storage_id transform_id run_id created_at created_by_id
id
1 Ea6LFuoAL55PLTXh0000 None True My image None .jpg None 29358 r4tnqmKI_SjrkdLzpuWp4g None None md5 None 1 True 1 None None 2024-10-24 09:31:44.752736+00:00 1
2 b6iC4k9OVo99RdVS0000 None True The iris collection None .parquet dataset 5629 5axHfO_2Pmlun2sJZHVuNg None None md5 DataFrame 1 True 1 None None 2024-10-24 09:31:44.844793+00:00 1
3 wpJpBoQpIuDXKpno0000 None True My fastq None .fastq.gz None 20 hi7ZmAzz8sfMd3vIQr-57Q None None md5 None 1 True 1 None None 2024-10-24 09:31:44.851402+00:00 1

The filter selects all artifacts based on the users who ran the generating notebook.

Under the hood, in the SQL database, it’s joining the artifact table with the run and the user table.

Comparators

You can qualify the type of comparison in a query by using a comparator.

Below follows a list of the most import, but Django supports about two dozen field comparators field__comparator=value.

and

ln.Artifact.filter(suffix=".jpg", created_by=user).df()
Hide code cell output
uid version is_latest description key suffix type size hash n_objects n_observations _hash_type _accessor visibility _key_is_virtual storage_id transform_id run_id created_at created_by_id
id
1 Ea6LFuoAL55PLTXh0000 None True My image None .jpg None 29358 r4tnqmKI_SjrkdLzpuWp4g None None md5 None 1 True 1 None None 2024-10-24 09:31:44.752736+00:00 1

less than/ greater than

Or subset to artifacts smaller than 10kB. Here, we can’t use keyword arguments, but need an explicit where statement.

ln.Artifact.filter(created_by=user, size__lt=1e4).df()
Hide code cell output
uid version is_latest description key suffix type size hash n_objects n_observations _hash_type _accessor visibility _key_is_virtual storage_id transform_id run_id created_at created_by_id
id
2 b6iC4k9OVo99RdVS0000 None True The iris collection None .parquet dataset 5629 5axHfO_2Pmlun2sJZHVuNg None None md5 DataFrame 1 True 1 None None 2024-10-24 09:31:44.844793+00:00 1
3 wpJpBoQpIuDXKpno0000 None True My fastq None .fastq.gz None 20 hi7ZmAzz8sfMd3vIQr-57Q None None md5 None 1 True 1 None None 2024-10-24 09:31:44.851402+00:00 1

in

ln.Artifact.filter(suffix__in=[".jpg", ".fastq.gz"]).df()
Hide code cell output
uid version is_latest description key suffix type size hash n_objects n_observations _hash_type _accessor visibility _key_is_virtual storage_id transform_id run_id created_at created_by_id
id
1 Ea6LFuoAL55PLTXh0000 None True My image None .jpg None 29358 r4tnqmKI_SjrkdLzpuWp4g None None md5 None 1 True 1 None None 2024-10-24 09:31:44.752736+00:00 1
3 wpJpBoQpIuDXKpno0000 None True My fastq None .fastq.gz None 20 hi7ZmAzz8sfMd3vIQr-57Q None None md5 None 1 True 1 None None 2024-10-24 09:31:44.851402+00:00 1

order by

ln.Artifact.filter().order_by("-updated_at").df()
Hide code cell output
uid version is_latest description key suffix type size hash n_objects n_observations _hash_type _accessor visibility _key_is_virtual storage_id transform_id run_id created_at created_by_id
id
3 wpJpBoQpIuDXKpno0000 None True My fastq None .fastq.gz None 20 hi7ZmAzz8sfMd3vIQr-57Q None None md5 None 1 True 1 None None 2024-10-24 09:31:44.851402+00:00 1
2 b6iC4k9OVo99RdVS0000 None True The iris collection None .parquet dataset 5629 5axHfO_2Pmlun2sJZHVuNg None None md5 DataFrame 1 True 1 None None 2024-10-24 09:31:44.844793+00:00 1
1 Ea6LFuoAL55PLTXh0000 None True My image None .jpg None 29358 r4tnqmKI_SjrkdLzpuWp4g None None md5 None 1 True 1 None None 2024-10-24 09:31:44.752736+00:00 1

contains

ln.Transform.filter(name__contains="search").df().head(5)
Hide code cell output
uid version is_latest name key description type source_code hash reference reference_type _source_code_artifact_id created_at created_by_id
id
12 YtNoz5TG6fAv0000 None True Igg2 Beta cell research intestine result. None None notebook None None None None None 2024-10-24 09:31:46.491768+00:00 1
36 cpZqufzZ5OcB0000 None True Research IgG1 IgG4 visualize IgG1. None None notebook None None None None None 2024-10-24 09:31:46.493258+00:00 1
40 dL0Qb0r9wkLS0000 None True Cranial Nerves IgD IgG3 research Bladder IgE s... None None notebook None None None None None 2024-10-24 09:31:46.493507+00:00 1
44 xnuwxggrp67h0000 None True Visualize IgE IgG4 IgD IgG2 research Dendritic... None None notebook None None None None None 2024-10-24 09:31:46.493761+00:00 1
48 drMIdhi1byTm0000 None True Investigate rank IgG3 Cementoblast IgG4 resear... None None notebook None None None None None 2024-10-24 09:31:46.494012+00:00 1

And case-insensitive:

ln.Transform.filter(name__icontains="Search").df().head(5)
Hide code cell output
uid version is_latest name key description type source_code hash reference reference_type _source_code_artifact_id created_at created_by_id
id
12 YtNoz5TG6fAv0000 None True Igg2 Beta cell research intestine result. None None notebook None None None None None 2024-10-24 09:31:46.491768+00:00 1
36 cpZqufzZ5OcB0000 None True Research IgG1 IgG4 visualize IgG1. None None notebook None None None None None 2024-10-24 09:31:46.493258+00:00 1
40 dL0Qb0r9wkLS0000 None True Cranial Nerves IgD IgG3 research Bladder IgE s... None None notebook None None None None None 2024-10-24 09:31:46.493507+00:00 1
44 xnuwxggrp67h0000 None True Visualize IgE IgG4 IgD IgG2 research Dendritic... None None notebook None None None None None 2024-10-24 09:31:46.493761+00:00 1
48 drMIdhi1byTm0000 None True Investigate rank IgG3 Cementoblast IgG4 resear... None None notebook None None None None None 2024-10-24 09:31:46.494012+00:00 1

startswith

ln.Transform.filter(name__startswith="Research").df()
Hide code cell output
uid version is_latest name key description type source_code hash reference reference_type _source_code_artifact_id created_at created_by_id
id
36 cpZqufzZ5OcB0000 None True Research IgG1 IgG4 visualize IgG1. None None notebook None None None None None 2024-10-24 09:31:46.493258+00:00 1
49 KBk6lKukKzzM0000 None True Research Centroacinar cell IgG2 cluster IgD in... None None notebook None None None None None 2024-10-24 09:31:46.494093+00:00 1
128 pdIvDNX2lL5a0000 None True Research visualize IgG1 IgG3. None None notebook None None None None None 2024-10-24 09:31:46.501791+00:00 1
136 4IoJ2JR16dmN0000 None True Research Cranial nerves Pituitary gland Veins ... None None notebook None None None None None 2024-10-24 09:31:46.504782+00:00 1
370 fLeFIXiKW4E40000 None True Research visualize Dendritic cell. None None notebook None None None None None 2024-10-24 09:31:46.526136+00:00 1
398 tVRiA42lvqhu0000 None True Research IgE IgE visualize Dendritic cell. None None notebook None None None None None 2024-10-24 09:31:46.530265+00:00 1
435 YIMUD5NQrigU0000 None True Research Cranial nerves Sigmoid colon IgG1 Cen... None None notebook None None None None None 2024-10-24 09:31:46.532412+00:00 1
466 Jck8OPKN8TlV0000 None True Research efficiency result Macula densa cell I... None None notebook None None None None None 2024-10-24 09:31:46.592593+00:00 1
482 Ic3XQZKMHbYW0000 None True Research efficiency IgE cluster intestinal Adr... None None notebook None None None None None 2024-10-24 09:31:46.593564+00:00 1
496 t0mPhtELc8kI0000 None True Research Parathyroid chief cell Centroacinar c... None None notebook None None None None None 2024-10-24 09:31:46.594456+00:00 1
500 Abo3tAO77cga0000 None True Research IgG3 research Sigmoid colon IgA rank ... None None notebook None None None None None 2024-10-24 09:31:46.594688+00:00 1

or

ln.Artifact.filter(ln.Q(suffix=".jpg") | ln.Q(suffix=".fastq.gz")).df()
Hide code cell output
uid version is_latest description key suffix type size hash n_objects n_observations _hash_type _accessor visibility _key_is_virtual storage_id transform_id run_id created_at created_by_id
id
1 Ea6LFuoAL55PLTXh0000 None True My image None .jpg None 29358 r4tnqmKI_SjrkdLzpuWp4g None None md5 None 1 True 1 None None 2024-10-24 09:31:44.752736+00:00 1
3 wpJpBoQpIuDXKpno0000 None True My fastq None .fastq.gz None 20 hi7ZmAzz8sfMd3vIQr-57Q None None md5 None 1 True 1 None None 2024-10-24 09:31:44.851402+00:00 1

negate/ unequal

ln.Artifact.filter(~ln.Q(suffix=".jpg")).df()
Hide code cell output
uid version is_latest description key suffix type size hash n_objects n_observations _hash_type _accessor visibility _key_is_virtual storage_id transform_id run_id created_at created_by_id
id
2 b6iC4k9OVo99RdVS0000 None True The iris collection None .parquet dataset 5629 5axHfO_2Pmlun2sJZHVuNg None None md5 DataFrame 1 True 1 None None 2024-10-24 09:31:44.844793+00:00 1
3 wpJpBoQpIuDXKpno0000 None True My fastq None .fastq.gz None 20 hi7ZmAzz8sfMd3vIQr-57Q None None md5 None 1 True 1 None None 2024-10-24 09:31:44.851402+00:00 1

Clean up the test instance.

!rm -r ./test-registries
!lamin delete --force test-registries
Hide code cell output
• deleting instance testuser1/test-registries